Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Article in English | MEDLINE | ID: mdl-30319545

ABSTRACT

Introduction: Published data regarding the association between solute carrier family 30, member 8 (SLC30A8) rs13266634 polymorphism and type 2 diabetes mellitus (T2DM) and impaired glucose regulation (IGR) risks in Chinese population are in-consistent. The purpose of this meta-analysis was to evaluate the association between SLC30A8 rs13266634 and T2DM/IGR in a Chinese population. Material and Methods: Three English (PubMed, Embase, and Web of Science) and three Chinese databases (Wanfang, CNKI, and CBMD database) were used for searching articles from January 2005 to January 2018. Odds ratio (OR) and 95% confidence interval (95%CI) were calculated with the random-effect model. Trial sequential analysis was also utilized. Results: Twenty-eight case-control studies with 25,912 cases and 26,975 controls were included for SLC30A8 and T2DM. Pooled risk allele C frequency for rs13266634 was 60.6% (95%CI: 59.2-62.0%) in the T2DM group and 54.8% (95%CI: 53.2-56.4%) in the control group which had estimated OR of 1.23 (95%CI: 1.17-1.28). Individuals who carried major homozygous CC and heterozygous CT genotype were at 1.51 and 1.23 times higher risk of T2DM, respectively, than those carrying minor homozygous TT. The most appropriate genetic analysis model was the co-dominant model based on comparison of OR1, OR2 and OR3. Five articles that involved 4,627 cases and 6,166 controls were included for SLC30A8 and IGR. However, no association was found between SLC30A8 rs13266634 and IGR (C vs. T, OR = 1.13, 95%CI: 0.98-1.30, p = 0.082). TSA revealed that the pooled sample sizes of T2DM exceeded the estimated required information size but not the IGR. Conclusion: The present meta-analysis demonstrated that SLC30A8 rs13266634 was a potential risk factor for T2DM, and more studies should be performed to confirm the association between rs13266634 polymorphism and IGR.

2.
Article in English | MEDLINE | ID: mdl-28208589

ABSTRACT

Background: Lipoma preferred partner (LPP) and T-cell activation Rho GTPase activating protein (TAGAP) polymorphisms might influence the susceptibility to celiac disease. Therefore, we performed a meta-analysis by identifying relevant studies to estimate the risks of these polymorphisms on celiac disease. Methods: The PubMed, Web of Science and Embase databases were searched (up to October 2016) for LPP rs1464510 and TAGAP rs1738074 polymorphisms. Results: This meta-analysis included the same 7 studies for LPP rs1464510 and TAGAP rs1738074. The minor risk A allele at both rs1464510 and rs1738074 carried risks (odds ratios) of 1.26 (95% CI: 1.22-1.30) and 1.17 (95% CI: 1.14-1.21), respectively, which contributed to increased risks in all celiac disease patients by 10.72% and 6.59%, respectively. The estimated lambdas were 0.512 and 0.496, respectively, suggesting that a co-dominant model would be suitable for both gene effects. Conclusions: This meta-analysis provides robust estimates that polymorphisms in LPP and TAGAP genes are potential risk factors for celiac disease in European and American. Prospective studies and more genome-wide association studies (GWAS) are needed to confirm these findings, and some corresponding molecular biology experiments should be carried out to clarify the pathogenic mechanisms of celiac disease.


Subject(s)
Celiac Disease/genetics , Cytoskeletal Proteins/genetics , GTPase-Activating Proteins/genetics , Genetic Predisposition to Disease/genetics , LIM Domain Proteins/genetics , Polymorphism, Single Nucleotide , Alleles , Humans
3.
Int J Mol Sci ; 17(4): 457, 2016 Mar 30.
Article in English | MEDLINE | ID: mdl-27043536

ABSTRACT

The pathogenesis of celiac disease (CD) has been related to polymorphisms in the regulator of G-protein signaling 1 (RGS1) and interleukin-12 A (IL12A) genes, but the existing findings are inconsistent. Our aim is to investigate the associations of two single-nucleotide polymorphisms (SNPs) (rs2816316 in RGS1 and rs17810546 in IL12A) with CD risk using meta-analysis. We searched PubMed and Web of Science on RGS1 rs2816316 and IL12A rs17810546 with CD risk. Odds ratio (OR) and 95% confidence interval (CI) of each SNP were estimated. All statistical analyses were performed on Stata 12.0. A total of seven studies were retrieved and analyzed. The available data indicated the minor allele C of rs2816316 was negatively associated with CD (C vs. A: OR = 0.77, 95% CI = 0.74-0.80), and a positive association was found for the minor allele G of rs17810546 (G vs. A: OR = 1.37, 95% CI = 1.31-1.43). The co-dominant model of genotype effect confirmed the significant associations between RGS1 rs2816316/IL12A rs17810546 and CD. No evidence of publication bias was observed. Our meta-analysis supports the associations of RGS1 and IL12A with CD and strongly calls for further studies to better understand the roles of RGS1 and IL12A in the pathogenesis of CD.


Subject(s)
Celiac Disease/genetics , Interleukin-12/genetics , RGS Proteins/genetics , Celiac Disease/pathology , Databases, Factual , Gene Frequency , Genetic Predisposition to Disease , Genotype , Humans , Odds Ratio , Polymorphism, Single Nucleotide , Risk Factors
4.
Acta Diabetol ; 51(5): 691-703, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25005490

ABSTRACT

Although the polymorphisms of PTPN22 and the variants of CTLA-4 have been reported to be the susceptibility genes, which increased risk of latent autoimmune diabetes in adults (LADA), the results remained inconclusive. The aim of this meta-analysis was to evaluate the association between the polymorphisms of two genes and LADA. We performed a systematic review by identifying relevant studies and applied meta-analysis to pool gene effects. Data from ten studies published between 2001 and 2013 were pooled for two polymorphisms: rs2476601 in the PTPN22 gene and rs231775 in the CTLA-4 gene. Data extraction and assessments for risk of bias were independently performed by two reviewers. Fixed-effect model and random-effect model were used to pool the odds ratios; meanwhile, heterogeneity test, publication bias and sensitive analysis were explored. The minor T allele at rs2476601 and the minor G at rs231775 carried estimated relative risks (odds ratio) of 1.52 (95 % CI 1.29-1.79) and 1.39 (95 % CI 1.11-1.74), respectively. These alleles contributed to an absolute lowering of the risk of all LADA by 4.88 and 14.93 % when individuals do not carry these alleles. The estimated lambdas were 0.49 and 0.63, suggesting a codominant model of effects was most likely for two genes. In summary, our systematic review has demonstrated that PTPN22 rs2476601 and CTLA-4 rs231775 are potential risk factors for LADA. An updated meta-analysis is required when more studies are published to increase the power of these polymorphisms and LADA.


Subject(s)
CTLA-4 Antigen/genetics , Diabetes Mellitus, Type 1/genetics , Genetic Predisposition to Disease , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics , Humans , Male , Polymorphism, Single Nucleotide , Risk Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...